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1 Introduction

Outdoor recreation is an industry of both intrinsic and instrumental value. Private spending

on recreational activities represents 2.1% of United States GDP annually (Bureau of Eco-

nomic Statistics, 2019) and participation in outdoor recreation activities has increased in

recent decades, with visitation to outdoor sites administered by the National Park Service

rising by 16% over the period from 2010-2019 (National Park Service, 2020).

In addition to being an economically-meaningful industry, outdoor recreation provides

insight into individuals’ interactions with the natural environment. Environmental condi-

tions at outdoor recreation sites—air quality on mountaintops, water quality at fishing sites,

flora at campsites—generate substantial non-market value to visitors, affecting the quality

of visitors’ experience. As a result, decisions of which outdoor recreation sites to visit re-

veal how individuals’ value the natural amenities of those sites. Studying consumer demand

for outdoor recreation therefore not only sheds light on a consequential industry, but also

allows us to understand the value of important environmental qualities which do not trade

in market settings and whose value therefore proves difficult to quantify. Understanding

these values has important implications for the provision of public goods, the development

of regulations, and the litigation of environmental damages.

This argument motivates a large literature in the estimation of non-market, environmen-

tal amenities. The logic underlying this approach stems from Hotelling (1947)’s simple insight

that consumption of an outdoor recreation site’s amenities requires the agent to incur the

cost of a trip to that site. The cost of traveling to a given site therefore serves as an implicit

price for visits to that site, and site visits serve as quantities demanded. With data on travel

costs and visitation patterns for different recreation sites, it is therefore possible to estimate

models of demand for site visits. Moreover, it is possible to define recreation sites as bundles

of attributes—including, for example, the types of outdoor activities supported, environmen-

tal qualities, and physical amenities, among others—so with data on these attributes across

sites or over time, researchers can estimate how these amenities affect recreation demand.

Estimating recreation demand as a function of travel cost and site attributes, including

environmental amenities, allows for the valuation of changes in environmental quality.

In this paper, I examine the potential for two common challenges in the empirical es-

timation of demand for goods and services to affect conventional applications of recreation

demand estimation, namely omitted variables bias and measurement error. Since the seminal

work of Wright (1928), economists have recognized the fundamental identification challenge

associated with estimating one or more coefficients of a system of simultaneous equations.

For example, the empirical relationship between observed prices and quantities for a good
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reflects a set of equilibrium points on both the supply and demand curves for that good, mak-

ing it impossible to estimate either the demand or the supply curves from these data alone.

More broadly, there are many empirical contexts in which economists have good reason to

believe that some unknown, unobserved factor simultaneously affects both the outcome of

interest and an observed, explanatory variable. Failing to account for this empirical reality

can substantially bias results.

In spite of this, researchers studying recreation demand often implicitly assume that

price—defined as individual-specific travel cost—is exogenous in the visitation decision.

However, there is ample reason to believe that correlation between travel cost, which is

a direct function of individuals’ choice of residence location, and unobserved characteristics

may exist. For example, if anglers choose their permanent residence based on attributes

of neighboring fishing sites or climbers choose to reside near high-value rock climbing loca-

tions, then estimates of individuals’ responsiveness to price—the travel cost parameter—will

be biased as these individuals are effectively choosing a lower price for a higher value good.

This has important implications for estimates of the value of non-market, environmental

amenities using standard recreation demand models.

There is ample empirical evidence to suggest that individuals do indeed sort—i.e., select

their residence location—based on natural amenities and proximity to outdoor recreation

opportunities. Work in the regional science and demography literature documents a decades-

long trend of in-migration to areas with high environmental qualities in the rural US (Hjerpe

et al., 2020; Rickman and Rickman, 2011). Recent empirical work in the spatial and urban

economics literature also documents Tiebout (1956)-like sorting on preferences for spatial

characteristics (Bayer and Timmins, 2007; Klaiber and Phaneuf, 2010), including climate

and environmental qualities (Albouy et al., 2016; Bayer et al., 2009). Moreover, preferences

for environmental qualities entering the choice of residence location is an implicit assumption

of one of the other main techniques used to value non-market environmental amenities, the

hedonic property framework of Rosen (1974). Indeed, much of this literature finds non-trivial

capitalization of environmental amenities in housing prices, suggesting that individuals’ do

consider these factors in choosing where to live (Bishop et al., 2020).

Researchers have also long acknowledged the challenges associated with mismeasured

variables in statistical and econometric analysis, which can often lead to attenuation in

estimates of relationships of interest (Hausman, 2001). In the recreation demand context,

this issue is perhaps particularly acute: while the price of recreation at a particular site is

the marginal cost of travel to that site, researchers and analysts rarely—if ever–have access

to the true cost of travel associated with realized trips, let alone the full set of travel costs

for unselected trips in individuals’ choice set. As a result, analysts must use information on
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residence location and the location of sites in individuals’ choice sets in combination with

a set of simplifying assumptions to construct estimates of travel costs. Though there is a

well-documented set of best practices for doing so—see Lupi et al. (2020)—this approach

easily leads to measurement error in the price of recreation activities, which is known to

produce biased results (Angrist and Krueger, 2001; Hausman, 2001).

Despite good reason to believe that both omitted variables-induced endogeneity and mea-

surement error in prices are non-trivial in this context, few if any applications of recreation

demand modeling take these concerns seriously. Rather, these applications make the strong

assumptions that all factors influencing demand for recreation consumption are observed and

well-measured. To demonstrate the impact of these assumptions on the inferences we draw

from these models, I simulate several site choice datasets that have either non-random se-

lection into travel cost, mismeasured travel costs, or both and find that the standard models

that ignore these challenges produce innacurate results.

To address both of these challenges in recreation demand estimation, I adapt a standard

econometric approach that accounts for endogeneity in discrete choice models to the recre-

ation demand context. Specifically, I outline how a two-stage control function approach to

recreation demand estimation can mitigate concerns of bias introduced by travel cost en-

dogeneity. This approach, first introduced by Heckman (1978), is widely applied in other

contexts, including the management literature (Petrin and Train, 2010; Villas-Boas and

Winer, 1999). The approach is analogous to the two-stage least squares estimator in linear

models, which is known to sufficiently account for bias introduced by omitted variables and

measurement error (Angrist and Krueger, 2001). In the first stage, travel cost is regressed

in a linear model on a set of instruments which plausibly satisfy instrument relevance and

an exclusion restriction and the residuals from this regression are included in estimation of

the non-linear discrete choice model of site choice in the second stage.

I demonstrate the effectiveness of this two-stage control function approach using the sim-

ulated site choice datasets that have either non-random selection into travel cost, mismea-

sured travel costs, or both. I find that this relatively straightforward correction substantially

outperforms standard approaches to recreation demand estimation.

To demonstrate the empirical relevance of these two challenges and the correction that

I propose, I replicate English et al. (2018)’s nationwide model of demand for shoreline Gulf

Coast recreation, which the authors use to estimate welfare losses associated with the 2010

Deepwater Horizon oil spill. This particular application is of first-order importance: the

recreation demand modeling described in English et al. (2018) played a substantial role in

compensatory litigation in the aftermath of the largest oil spill in US history. I estimate two

versions of English et al. (2018)’s model, one which ignores potential travel cost endogeneity
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and measurement error and one which accounts for these issues via the two-stage control

function approach. I find that accounting for these common empirical problems alters welfare

estimates by as much as 22% in this context, a substantial difference in a policy-relevant

setting.

This paper relates to several broad literatures. The first is the expansive literature using

recreation demand models to value non-market environmental amenities. Early empirical

applications of the travel cost logic—first introduced by Hotelling (1947)—estimate single site

demand, mostly using zonal aggregate data on individuals’ travel costs (Ward and Loomis,

1986). Later work notes the importance of accounting for substitution across recreation sites,

relying on McFadden (1974)’s random utility maximization (RUM) framework to model

agents’ choice among a discrete set of potential sites (Phaneuf and Smith, 2005). RUM

models are the dominant approach for describing consumer preferences for recreation and

are used in a number of different contexts, including the valuation of water quality changes

(Abidoye and Herriges, 2012; Abidoye et al., 2012; Egan et al., 2009; Smith et al., 1986), fish

abundance (Kling and Thomson, 1996; Parsons et al., 2000; Shaw and Ozog, 1999), beach

width (Parsons et al., 1999), and a host of physical site amenities (Hicks and Strand, 2000).

Several studies recognize the potential for omitted variables to bias estimates of recreation

demand models. Parsons (1991) argues that recreation demand estimation suffers from a

price endogeneity issue due to the potential for sorting on preferences for recreation, but does

not provide an approach to address this issue in structural discrete choice models of recreation

demand. Murdock (2006) and Abidoye et al. (2012) develop estimation procedures that

account for unobserved site-specific attributes in the RUM model using alternative-specific

constants while also allowing for inference on time-invariant, observed site characteristics.

While this approach is feasible in many settings, the control function approach for which I

advocate is computationally and conceptually straightforward and easily allows for inference

on site-specific attributes. Moreover, the approach of relying on alternative-specific constants

does not mitigate the particular source of endogeneity in question since the form of travel

cost endogeneity arises over individual decision makers rather than sites.

Noting that congestion—a key site attribute, which is often omitted in recreation demand

modelling—is endogenously determined by individuals’ site visitation decision, Timmins and

Murdock (2007) use an instrumental variables approach to account for this endogeneity in

a revealed preference context. von Haefen and Phaneuf (2008) demonstrate that, when

available, stated preference data can be combined with revealed preference data to identify

site quality effects on behavior in the presence of unobservable site and user characteristics.

This paper also relates to a similarly expansive literature examining the capitalization

of non-market environmental amenities in housing prices. Most of the results examining the
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price effects of environmental qualities use the hedonic property framework of Rosen (1974)

to estimate capitalization in home prices. The hedonic framework has been applied to value

proximity to hazardous waste sites (Greenstone and Gallagher, 2008), changes in air quality

(Bajari et al., 2012; Bento et al., 2014), proximity to shale gas wells (Muehlenbachs et al.,

2015), flood risk (Hallstrom and Smith, 2005), and water quality (Keiser and Shapiro, 2019).

Generally, these studies find evidence in favor of capitalization of environmental amenities:

residential transactions appear to account for a home’s exposure to environmental amenities,

both positive (i.e., amenities) and negative (i.e., disamenities). These general findings suggest

that environmental qualities—the recreation site attributes of interest in most applications of

recreation demand modelling—do indeed play a role in determining individuals’ permanent

residence location.

Several papers do consider both recreation site choices and residence locations when

valuing non-market environmental amenities. Phaneuf et al. (2008) point out that conven-

tional hedonic property studies estimating willingness-to-pay for non-market environmental

amenities may not fully capture the set values that homeowners derive from non-market

environmental amenities. In particular, Phaneuf et al. (2008) argue that recreational use

values are not fully incorporated in valuations of environmental amenities derived from con-

ventional hedonic analyses. The authors present a theoretical model which motivates a

two-stage revealed preference model in which a recreation demand model is first estimated

as a function of the environmental quality of interest, and the resulting estimates of marginal

welfare gains from changes in environmental amenities are then incorporated into a standard

hedonic property model. Phaneuf et al. (2008) apply this conceptual model to study ecosys-

tem services delivered by a watershed, finding that accounting for recreational use values

in a hedonic property model meaningfully increases estimates of welfare derived from the

presence of a watershed. Kuwayama et al. (2022) apply the approach of Phaneuf et al. (2008)

to estimates willingness-to-pay for water quality improvements in Tampa Bay, FL. I build

on this literature by demonstrating the importance of accounting for not only recreation

demand in models of residence location choice, but also residence location choices in models

of recreation demand.

The remaining sections of the paper are organized as follows. Section 2 presents a stan-

dard discrete choice model of recreation demand that follows a class of models commonly

found in the literature. Section 3 discusses each of the two challenges with the conventional

recreation demand models—non-random and mismeasured travel costs—and provides sim-

ulation evidence of the potential bias resulting from these challenges. Section 4 presents

the two-stage control function solution and documents the substantial performance gain of

this estimation approach in simulated data. Section 5 replicates the recreation demand
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model application of English et al. (2018) with the control function correction and Section

6 concludes.

2 A Standard Model of Recreation Demand

This section presents a relatively standard discrete choice model of demand for recreation

sites. While the literature employs a number of different parametric assumptions for esti-

mating discrete choice models of recreation demand, I focus on a particularly common set

of assumptions: the random parameters multinomial logit model. It is important to note

that the challenges discussed in Section 3 generalize to many of the other common discrete

choice models in the literature.

The basic random utility maximization hypothesis assumes that individuals select the

alternative yielding the highest level of utility when facing a well-defined choice set (McFad-

den, 1974). Let uijt denote the conditional utility received by individual i ∈ {1, . . . , N} when

selecting alternative j ∈ {1, . . . , J} on choice occasion t ∈ {1, . . . , T}. The individual selects
alternative j if and only if uijt > uikt∀k ̸= j. Let yijt = 1 if individual chooses alternative j

and yijt = 0 otherwise, i.e.

yijt =

{
1 uijt > uikt∀k ̸= j

0 otherwise

Since it is not possible to observe all factors influencing individual site selection decisions,

conditional utility is parameterized as a function of observable individual- and alternative-

specific attributes, Xijt, and some residual term, εijt, which is known to the individual when

making their decision, but unobserved by the econometrician. In particular, individual i’s

conditional utility from visiting recreation site j on choice occasion t is as follows:

uijt = X ′
ijtβi − cijtαi + ξj︸ ︷︷ ︸

≡vijt(Xijt;θi)

+εijt (1)

where X ′
ijt =

[
x′
jt cijt

]
is a vector of observable site- and choice occasion-specific attributes,

xjt, and an idiosyncratic measure of travel cost, cijt; ξj is an alternative-specific constant that

captures average valuations of invariant, site-specific attributes; and εijt is an idiosyncratic,

unobserved shock to preferences. I include the alternative-specific constant, ξj, in line with

best practices in the literature to account for unobservable site attributes (Lupi et al., 2020).1

1It is possible to include the alternative-specific constant, ξj , and still obtain estimates of consumers’
valuation of invariant, site-specific observables by projecting the observable factors of interest on estimates
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The standard approach to fully specify the model given by (1) is to make an assumption

on the distribution of the idiosyncratic shocks to preferences, i.e., the residual term εijt.

While there are several different distributional assumptions made in the recreation demand

literature, the most common of these is that εij is distributed Type 1 Extreme Value (T1EV)

across the population, and is iid across individuals and sites, which corresponds to the logit

model. This has a number of desirable properties, including the fact that each individual’s

resulting choice probability for the different alternatives has a simple, closed-form solution.

Note that (1) allows the coefficients on the additive, observed components of utility,

θ′i =
[
β′
i αi

]
, to vary across individuals i in the population. To make this assumption

tractable, it is typically assumed that this individual-level heterogeneity follows some pa-

rameterized distribution, f(θ). This specification allows for heterogeneity in preferences for

the different observable attributes and, when combined with the assumption that the error

term is distributed T1EV, is referred to in the literature as the mixed or random param-

eters logit. Allowing for individual-level preference heterogeneity has several benefits over

a standard logit model without individual-level parameters. Perhaps most importantly, it

results in unrestricted substitution patterns. In the standard logit framework, two alter-

natives with equivalent choice probabilities will have the same substitution patterns. This

property is undesirable in many contexts, including recreation demand estimation: simply

because two sites have similar probabilities of being visited in the data does not mean that

individuals are equally likely to substitute towards them as a result of a change in travel cost

or environmental quality.

A common assumption in the literature estimating mixed logit models is that the individual-

level parameters are normally distributed, θi
iid∼ N (µ,Σ). The econometrician therefore es-

timates mean and standard deviation terms for each normally-distributed coefficient with

individual-level heterogeneity, thereby providing information on the distribution of prefer-

ences for different observed attributes in the population. While the choice of parametric

distribution is non-trivial, this approach greatly reduces the dimensionality of the model

and makes estimation tractable.

Taking the common assumption of an extreme-value error term, εijmt
iid∼ T1EV, it is

possible to specify the closed-form choice probabilities in this model. In particular, the

probability that individual i chooses site j on choice occasion t is:

pijt = Pr(j ∈ argmax
k∈C

uikt) =

∫
exp(vijt(Xijt; θ))∑
k∈C exp(vikt(Xijt; θ))

f(θ)dθ (2)

where C = {1, ..., J} is the choice set. This random parameters logit probability is a weighted

of these site fixed effects (Murdock, 2006).
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average of the logit formula evaluated at different values of the parameters, θ, with the

weights given by the density f(θ). Estimation proceeds via simulated maximum likelihood,

where the choice probability (2) is approximated by the average across a large number of

draws from, for example, θi
iid∼ N (µ,Σ) and the simulated log likelihood is defined as:

L(θ) =
N∑
i=1

T∑
t=1

J∑
j=1

yijt log(p̂ijt(θ)) (3)

where likelihood contributions are summed across individuals i ∈ {1, . . . , N}, choice occa-

sions t ∈ {1, . . . , T}, and alternatives j ∈ {1, . . . , J}. The maximum simulated likelihood

estimate is the value of θ that maximizes (3).

Having recovered estimates of the model parameters, θi, it is possible to construct es-

timates of willingness-to-pay for observable attributes, other measures of marginal rates

of substitution, or changes in welfare associated with different attribute levels.2 Often in

recreation demand model applications, we are interested in constructing a measure of con-

sumers’ marginal willingness-to-pay for a given observable attribute, such as a measure of

environmental quality, qjt:

WTP q
i =

βq
i

αi

Another statistic that is often of interest in recreation demand applications is the change in

consumer surplus resulting from a change in a given environmental quality, say from q0jt to

q1jt ∀j, t, which based on the parametric assumptions above is given by:

∆CSi =
1

αi

[∑
j

exp
(
vijt(X

1
ijt; θi)

)
−
∑
j

exp
(
vijt(X

0
ijt; θi)

)]

It is possible to construct empirical estimates of these statistics from observable data and

parameter estimates from (3).

3 Challenges with Travel Cost in The Standard Model

In this section, I present two major challenges associated with the implementation of the

standard model outlined in Section 2. In particular, I discuss the challenges of non-random

2It is important to note that a feature common to all models of discrete choice is that the scale of utility
is irrelevant: the alternative with the highest utility is the same regardless of the overall scale of utility
(Train, 2009). This means that model parameters are only identified from observed choices and parametric
assumptions up to an arbitrary shift in the scale of utility. Since the scale of utility does not affect the ratio
of any two model parameter estimates, measures of willingness-to-pay and other ratios of parameters are
identified from observed choices and parametric assumptions.
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sorting on preferences for outdoor recreation—leading to selection into travel costs—and

measurement error in travel costs and the resulting impacts on applications of standard

models of recreation demand.

3.1 Selection into Travel Costs

I begin with a discussion of non-random residential sorting leading to selection into travel

costs. If households factor preferences for certain recreation or environmental amenities into

residence location decisions, this can result in non-random, non-zero correlation between

observed travel costs and preferences for a specific site. For example, it is possible that

households with a particularly strong idiosyncratic preference for a specific site and its at-

tributes may choose to live closer to that site, all else equal. As Parsons (1991) suggests,

this type of sorting towards desirable recreation sites could produce a negative correlation

between observed travel cost and the likelihood of visiting a site, the quantity of visits to a

site, or some other measure of demand for a site.

It is also possible—though admittedly, less likely—that households with a particularly

strong idiosyncratic preference for a specific site and its attributes may choose to live further

from that site, all else equal. This form of non-random sorting would result in a positive

correlation between observed travel cost and demand for a given site. Such a pattern might

emerge in the data if unobserved, idiosyncratic preferences for a site are correlated with

another unobserved factor that drives sorting away from desirable sites. For instance, a

strong idiosyncratic preference for a remote, pristine recreation site may be correlated with

household income, which itself may be associated with a higher propensity to reside in urban

centers far from high value recreation sites.

Though the former—sorting towards high-value sites—may be more plausible in prac-

tice than the latter—sorting away from high-value sites—it is important to note that any

non-random spatial distribution of residences and recreation sites can lead to biased infer-

ences under the standard approach. I demonstrate the bias in the standard approach to

demand estimation under each model of residence-recreation location choice in Figure 1. For

each form of sorting the analyst observes realized variation in levels of recreation demand

at different prices: (P1, Q1), (P2, Q2), and (P3, Q3). Ignoring the potential endogenous rela-

tionship between travel cost and recreation demand that arises due to non-random sorting,

the analyst then recovers estimates of household recreation demand, dest. As I show in

Figure 1a, when households move close to recreation sites for which they have high idiosyn-

cratic preferences, the analyst overestimates households’ responsiveness to recreation costs,

mistaking outward shifts in household demand curves for movement along the recreation

price gradient. Analogously, when households move far from recreation sites for which they
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Figure 1. Biased Recreation Demand Estimates with Two Sorting Patterns

(a) Sorting towards Recreation Sites

Price

Quantity

dest

dact1dact2dact3

P1

P2

P3

Q1Q2Q3

(b) Sorting away from Recreation Sites

Price

Quantity

dest

dact1

dact2

dact3

P1

P2

P3

Q1Q2Q3

Notes: This figure shows two stylized models of the bias introduced by non-random sorting of households
on preferences for outdoor recreation. The left panel describes a scenario in which households sort
towards recreation sites: households with higher preferences for a particular site’s amenities choose to
reside closer to that site. The right panel describes a scenario in which households sort away from
recreation sites: households with higher preferences for a particular site’s amenities choose to reside
further from that site. In each scenario, the econometrician observes (P1, Q1), (P2, Q2), and (P3, Q3)
and estimates the demand curve dest. The demand curves dact1 , dact2 , and dact3 describe the actual demand
curves of households observed at each point in the data consistent with each model of residence choice.

have high idiosyncratic preferences, the analyst underestimates households’ responsiveness

to recreation costs, mistaking inward shifts in household demand curves for movement along

the recreation price gradient. I demonstrate this form of sorting in Figure 1b.

To be more precise about the nature of the endogeneity problem posed by non-random

selection into travel costs, I return to the baseline model given by (1). Re-writing the

residual term as the sum of two components gives the following specification of household

i’s conditional utility from visiting recreation site j on choice occasion t:

uijt = vijt(Xijt; θ) + ξijt + ε̃ijt︸ ︷︷ ︸
≡εijt

(4)

where ξijt is an unobserved, idiosyncratic preference that is correlated with travel cost and

ε̃ijt is an unobserved, idiosyncratic, and independent shock to preferences. The endogeneity

problem arises due to the fact that travel cost is given by

cijt = w(zijt; γ) + f(ξijt) + µijt︸ ︷︷ ︸
≡ϵijt

(5)
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where zijt are some observed instruments that affect travel cost, but not recreation site

choice; w(·) is a function with parameters γ that relates zijt and travel cost cijt; f(·) is

some unknown function that relates the idiosyncratic recreation site preference, ξijt to travel

cost cijt; and µijt is a mean-zero, idiosyncratic shock to travel costs. In the standard model

outlined in Section 2, I assume that ξijt+ε̃ijt = εijt ∼ T1EV, thereby assuming that εijt ⊥ cijt

which implicitly ignores the fact that ξijt ̸⊥ cijt.

I demonstrate the bias introduced by non-random selection into travel costs in the stan-

dard recreation demand model via a set of simulated data generating processes. In particular,

I specify different data generating processes based on the model of endogenous travel costs

given by (4) and (5), simulate a large number of choice data from each data generating pro-

cess, and apply the standard recreation demand model of (1) that ignores the endogeneity of

travel costs to estimate model parameters based on each simulated choice dataset. Having

knowledge of the data generating processes allows me to directly compare the resulting dis-

tributions of model parameter estimates with the true values of the target parameters. For

expositional clarity, I suppress individual-level heterogeneity in target model parameters in

both the assumed data generating processes and the discrete choice model that I apply to

the simulated data.

For three distinct simulated data generating processes, I assume that individual i’s indi-

rect utility from and travel cost for alternative j follows

uij = 1.0xij − 2.0cij + 1.0xj + ξij + ε̃ij

cij = 5.0 + 1.0zij + ρsimξij + µij

(6)

where
xij ∼ U(−1.0, 1.0) xj ∼ U(−1.0, 1.0) zij ∼ U(−1.0, 1.0)

ξij ∼ N (0.0, 1.0) ε̃ij ∼ Gumbel(0.0, 1.0) µij ∼ N (0.0, 1.0)
(7)

For the three simulations, I make the following assumption about ρsim to fully specify the

data generating process of (6) and (7):

Simulation 1: ρ1 = 0.0 (No endogeneity)
Simulation 2: ρ2 = −1.0 (Sorting towards sites)
Simulation 3: ρ3 = 1.0 (Sorting away from sites)

I simulate 1000 unique choice datasets for each of the three above data generating pro-

cesses. Each dataset consists of 1000 individuals—i.e., choice occasions—choosing between

100 alternative sites. The top panel of Figure 2 plots the empirical relationship between the

idiosyncratic, unobserved preference (ξij) and the idiosyncratic, observed cost variable (cij)

for an example simulated choice dataset for each data generating process.
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Figure 2. Bias from Non-random Sorting

Notes: This figure plots example relationships between households’ unobserved, idiosyncratic prefer-
ence (ξijt) and travel cost from a single simulated dataset (top) as well as the distribution of estimated
willingness-to-pay (WTP) across 1000 simulated datasets (bottom). The figure shows example rela-
tionships and WTP estimates for three assumed data generating processes: one where the idiosyncratic
preference and travel cost are independent (left); one corresponding to a model of household sorting
towards desirable recreation sites, where the idiosyncratic preference and travel cost are negatively cor-
related (center); and one corresponding to a model of household sorting away from desirable recreation
sites, where the idiosyncratic preference and travel costs are positively correlated (right). The true value
of the the willingness-to-pay statistic is shown as the vertical black line in the bottom panel. The full
data generating process for each of simulations 1 to 3 are described in Section 3.1.
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Having simulated 1000 choice datasets for each of the three simulations, I then make

the standard assumption that (ξij + ε̃ij) ∼T1EV—i.e., ignore the data generating process

for travel costs. This allows me to estimate the parameters of the linear indirect utility

model in (6) for each simulated dataset via a multinomial logit model, thereby generating

distributions of parameter estimates from the standard model of recreation demand for

each data generating process. Note that since the scale of indirect utility is in general not

identified in discrete choice models, I compare estimates of the marginal rate of substitution

between xij and cij—a measure of willingness-to-pay for xij—when evaluating the relative

performance of the standard assumption of travel cost exogeneity across the three distinct

data generating processes.3

The bottom panel of Figure 2 plots the empirical distributions of willingness-to-pay esti-

mates from the standard logit estimator across the three sets of simulations. Unsurprisingly,

with no correlation between the mean-zero idiosyncratic preference (ξijt) and travel cost (cijt)

in Simulation 1, the logit model estimator performs well, with an average willingness-to-pay

across all 1000 simulated samples equal to the true value of −0.5. Introducing non-zero

correlations between the unobserved preference and travel cost results in poor coverage of

the true target statistic: the average willingness-to-pay across all 1000 simulated samples is

−0.41 in Simulation 2 and −0.64 in Simulation 3. Moreover, I can reject the null hypothesis

that the willingness-to-pay estimates equal the true value of −0.5, with t-statistics of 2.77

and −3.21 for Simulations 2 and 3, respectively.

The pattern of the bias in the standard logit model parameter estimates for Simulations 2

and 3 matches the predictions of Figure 1. With sorting towards recreation sites, we observe

a negative correlation between travel costs and recreation demand as households select desir-

able sites to which they are proximate. As we can see from the simulation results in Figure

2, this results in overestimation of households’ responsiveness to recreation costs—i.e., the

parameter α on travel cost in indirect utility—which in turn leads to an underestimation of

the (magnitude of the) willingness-to-pay statistic, since this statistic involves dividing by

the travel cost parameter. Similarly, with sorting away from recreation sites, we observe a

positive correlation between travel costs and recreation demand as households select remote,

desirable sites. As is clear from Figure 2, this results in underestimation of households’ re-

sponsiveness to recreation costs, which in turn leads to an overestimation of the (magnitude

of the) willingness-to-pay statistic. Thus, regardless of the direction of the relationship be-

tween unobserved, idiosyncratic preferences and travel cost, the phenomenon of non-random

sorting in these contexts presents a substantial challenge to standard discrete choice models

of recreation demand.

3See Train (2009) and the discussion in Section 2.
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3.2 Measurement Error in Travel Cost

I turn now to a second issue in standard applications of recreation demand estimation,

namely measurement error in travel costs. The basic logic of the recreation demand model

assumes that the marginal cost of travel to a site is the price of consuming that site’s

amenities. The marginal cost of travel is inclusive of both the direct monetary costs of site

visitation, including fuel, tolls, vehicle depreciation, or airfare, as well as the value of travel

time, which is the value of foregone wages directly associated with travel. Unfortunately,

analysts rarely—if ever—have access to the true cost of travel associated with realized trips,

let alone the full set of travel costs for unselected trips in households’ choice set.

As a result, analysts must use information on residence location and the location of sites

in households’ choice sets in combination with a set of assumptions to construct estimates

of travel costs. While there is a well-defined set of best practices for doing so—see Lupi

et al. (2020)—this approach to estimating travel costs can clearly result in both classical

and non-classical (i.e., non-random) measurement error.

In particular, since driving is the main mode of transport in most recreation demand

contexts, once analysts have calculated estimates of driving distances between households’

residence location and all recreation sites in their choice sets, they must then use estimates

of marginal fuel costs, tolls, and vehicle depreciation to translate these driving distances

to monetary values. A common approach is to use data on average marginal driving costs

published by automotive clubs such as the American Automobile Association (Lupi et al.,

2020). While this may provide reasonable estimates of average per-mile driving costs, there

is likely substantial heterogeneity in actual marginal driving costs that results in classical—

i.e., mean zero—measurement error. Similarly, it is often difficult for analysts to observe

households’ opportunity costs of travel time. As a result, analysts often use some fixed

proportion—usually between one third and one half (Lupi et al., 2020)—of average wages

in the ZIP code or county of residence to calculate households’ value of travel time. This

combined with necessary assumptions about the speed of households’ travel over driving

distances can similarly introduce classical measurement error in travel costs.

Additional features of the travel cost construction process can lead to non-classical mea-

surement error. As a best practice, analysts should condition on the road network between

households’ residence location and all recreation sites in their choice sets when calculating

driving distances. While there are a growing number of tools to do so, including Google Maps

and Open Source Routing Machine, this can be computationally and financially expensive.

As a result, analysts often use measures of the linear distance between households’ residence

location and recreation sites as a proxy for driving distance. This almost surely underes-

timates the true driving distance. Moreover, the degree to which this underestimates true
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Figure 3. Bias from Measurement Error in Travel Cost

Notes: This figure plots example relationships between households’ true and observable travel costs
from a single simulated dataset (top) as well as the distribution of estimated willingness-to-pay (WTP)
across 1000 simulated datasets (bottom). The figure shows example relationships and WTP estimates
for three assumed data generating processes: one where there is additive, mean-zero measurement error
in travel costs (left); one where measurement error is increasing in travel distance (center); and one
where there is both additive, mean-zero measurement error in travel costs as well as non-random sorting
towards desirable recreation sites, where the idiosyncratic preference and true, unobserved travel costs
are negatively correlated (right). The true value of the the willingness-to-pay statistic is shown as the
vertical black line in the bottom panel. The full data generating process for each of simulations 4 to 6
are described in Section 3.1.
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driving distance likely increases in the magnitude of the actual driving distance between a

residence and recreation site, resulting in non-classical measurement error. Another issue in

these settings is the assumed travel mode: as the distance to different sites in a household’s

choice set increases, so too does the probability that they choose to fly to a given site rather

than drive. Though there are several noteworthy exceptions, including English et al. (2018),

most recreation demand applications either explicitly or implicitly assume that households

only drive to sites in their choice set, which can result in overestimation of the true cost of

travel, particularly as the linear distance between a sites and a household increases.

Both classical and non-classical measurement error can lead to biased inferences from

standard discrete choice models of recreation demand: similar to linear models, measurement

error in travel costs leads to the familiar attenuation or regression dilution problem which

leads to inconsistent, underestimation of model parameters. To be more precise about the

nature of the measurement error problem in this context, I return to the baseline model

outlined in Section 2. Setting aside the potential for non-random sorting by households,

assume that the analyst evaluates the following model of household i’s conditional utility

from visiting recreation site j on choice occasion t:

uijt = X ′
ijtβi − ĉijtαi + ξj + ε̃ijt (8)

where ĉijt is the estimated or observed travel cost for household i to visit site j at time t

such that

ĉijt = cijt + g(cijt) + ηijt︸ ︷︷ ︸
≡ζijt

(9)

Thus, the travel cost that the analyst observes is equal to the sum of the true travel cost,

cijt; some function g(·) of the true travel cost; and some mean-zero shock to the true travel

cost, ηijt. On inspection, the structure of the measurement error problem described by (8)

and (9) is analagous to the non-random travel cost issue outlined in Section 3.1: plugging (9)

into (8) shows that both observed travel cost, ĉijt, and household utility are functions of an

unobserved shock to true travel cost and—possibly—some unknown function of true travel

costs. This induces a correlation between household indirect utility and travel cost that, if

the analyst ignores the data generating process (9) and makes a standard assumption such

as ε̃ijt ∼T1EV will lead to biased estimates of the parameter α. Indeed, literature shows

how ignoring the data generating process of (9) leads to biased parameter estimates: for

example Kao and Schnell (1987) derives the asymptotic properties of a multinomial logit

model with measurement error and shows that the parameter estimates from the standard
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logit estimator do not converge to the true values.

I demonstrate the bias from different forms of measurement error in the recreation de-

mand context by adapting the data generating process of (6) and (7) to include imperfectly

observed travel cost. I specify three distinct data generating processes to examine the bias

from measurement error: in the first (Simulation 4), I ignore potential correlation between

idiosyncratic preferences and true travel costs by setting ρ4 = 0.0 and assume that the

analyst observes the following travel cost:

Simulation 4: ĉijt = cijt + ηijt (Classical measurement error)

where ηijt ∼ N (0.0, 1.0) and which corresponds to classical measurement error in travel

costs. In the second measurement error data generating process (Simulation 5), I again

ignore potential correlation between preferences and true travel costs by setting ρ5 = 0.0

and assume that the analyst observes the following travel cost:

Simulation 5: ĉijt = cijt(1 + ηijt) (Non-classical measurement error)

where again ηijt ∼ N (0.0, 1.0) and which corresponds to non-classical measurement error in

travel costs. In the third and final measurement error data generating process (Simulation

6), I allow for both non-random selection into true travel costs and measurement error in

observed travel costs. In particular, I set ρ6 = −1.0 and assume that there is classical

measurement error of the same classical form as in Simulation 4:

Simulation 6: ĉijt = cijt + ηijt (Classical measurement error)

where again ηijt ∼ N (0.0, 1.0).

As with the simulations in Section 3.1, I generate 1000 unique choice datasets for each of

the three data generating processes defined by Simulations 4 through 6, including both true

and observed travel costs. Once again, each dataset consists of 1000 individuals choosing

between 100 alternative sites. The top panel of Figure 3 plots the empirical relationship

between true travel costs and travel costs observed by the analyst for an example simulated

choice dataset for each simulation.

Having simulated 1000 choice datasets for each of the three simulations, I again make the

standard assumption that (ξij+ζij+ε̃ij) ∼ T1EV—i.e., ignore the data generating process for

travel costs—where ζij is the residual from the observed travel cost data generating process.

This allows me to estimate the parameters of the linear indirect utility model in (6) for

each simulated dataset via a multinomial logit model, thereby generating distributions of
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parameter estimates from the standard model of recreation demand for each data generating

process. Importantly, however, I now use the simulated observed travel costs, ĉijt to estimate

the parameters of the model and then compare estimates of the marginal rate of substitution

between xij and cij when evaluating the relative performance of the standard multinomial

logit estimator in the presence of measurement error.

The bottom panel of Figure 3 plots the empirical distributions of willingness-to-pay es-

timates from the standard logit estimator across the three different measurement error data

generating processes. Unsurprisingly, the presence of measurement error results in poor cov-

erage of the true target statistic: across all three sets of simulations, average estimates of the

willingness-to-pay measure are between −0.58 and −0.90. This is consistent with measure-

ment error producing attenuation in estimates of the travel cost parameter: a smaller-in-

magnitude travel cost parameter estimate results in a larger-in-magnitude willingness-to-pay

measure, all else equal. Moreover, I can reject the null hypothesis that the distribution of

willingness-to-pay estimates cover the true value of −0.5 for Simulations 4 and 5, with

t-statistics of −6.36 and −5.23, respectively. In the case of Simulation 6, the negative cor-

relation between the idiosyncratic preference, ξijt, and true travel costs works to partially

offset this trend, resulting in slightly better coverage of the true value of the statistic.

4 Solution: An Instrumental Variables Estimator

While the challenges of non-random sorting on preferences for outdoor recreation and mea-

surement error in travel costs can bias estimates from standard discrete choice models of

recreation demand, a relatively simple class of alternative estimators can circumvent these

issues. This section presents an instrumental variables estimator that is analogous to two-

stage least squares in the nonlinear context of standard discrete choice models. The esti-

mator, referred to in the literature as a two-stage control function approach, is relatively

straightforward to implement and, with some simple additional assumptions outperforms

the baseline models in numerical simulations. I begin my exposition of this estimator in the

case on non-random sorting assuming the analyst perfectly observes true travel costs and

then discuss the performance of this estimator with imperfectly observed travel costs.

4.1 Control Function Approach and Endogenous Travel Cost

Based on the model of indirect utility and travel costs outlined by (4) and (5), there exists a

non-zero correlation between the unobserved, idiosyncratic preference, ξijt, and the residual

travel cost term, ϵijt. Assuming that it is possible to observe ϵijt, I can decompose the

unobservable preference term, ξijt, into its mean conditional on ϵijt and deviations around
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this mean:

ξijt = E[ξijt|ϵijt] + ξ̃ijt (10)

The conditional expectation in (10) is a function of ϵijt and can be approximated using a

control function:

ξijt = CF (ϵijt;λ) + ξ̃ijt (11)

where λ parameterizes the function CF (·). The simplest assumption is that

CF (ϵijt;λ) = λϵijt (12)

Substituting (11) and (12) into (4) gives:

uijt = vijt(Xijt; θ) + λϵijt + ξ̃ijt + ε̃ijt (13)

where by construction both ξ̃ijt and ε̃ijt are idiosyncratic, unobserved, and independent.

It is possible to take the model implied by (13) to the data to recover unbiased estimates

of the target parameters, θ. Doing so requires a set of assumptions about the residual terms

ξ̃ijt and ε̃ijt as well as access to a set of valid instruments, zijt, for travel cost. While a

number of different assumptions on the structure of the unobserved terms ξ̃ijt and ε̃ijt are

plausible, the simplest is to treat each as an error component and assume that their sum is

independently and identically distributed T1EV, i.e., (ξ̃ijt + ε̃ijt) ∼T1EV. This assumption

then allows me to estimate (13) as a logit model with an additional observable variable, ϵijt,

and parameter, λ. For a discussion of additional possible assumptions on the distribution of

these error terms, see Train (2009) and Petrin and Train (2010).

Armed with an assumption on the distribution of the terms ξ̃ijt and ε̃ijt, it is possible

to specify an estimator from (13) that identifies the true target parameters, θ. However, I

need to have consistent estimates of the residual term ϵijt from the first stage formula for

travel costs (5) in order to do so. This requires access to a valid travel cost instrument,

zijt. In particular, the travel cost instrument must satisfy the following relatively standard

conditions: instrument relevance, i.e., Cov(cijt, zijt) ̸= 0, and instrument exogeneity, i.e.,

Cov(zijt, ξijt) = 0. These assumptions are common to other instrumental variables estimators

(Angrist and Krueger, 2001).

Assuming that the analyst has access to a travel cost instrument that satisfies the above

two conditions, zijt, it is possible to implement a two-stage control function estimator that

identifies the true parameters. Estimation proceeds as follows:

1. First (5) is estimated: this is a regression with the endogenous travel cost variable as

the dependent variable and the exogenous instrument, zijt, as the explanatory vari-
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able. While it is possible to flexibly specify the functional form of w(zijt, γ), a simple

assumption is that zijt enters linearly such that the instrument enters (5) additively

and the parameters γ are recovered by ordinary least squares. The residuals from this

first stage regression provide estimates of ϵijt:

ϵ̂ijt = cijt − w(zijt; γ̂)

2. In the second step, a discrete choice model—such as a random parameters logit—is

estimated with the first stage residual, ϵ̂ijt entering as an additional term. Estimation

follows the same likelihood routine as that for the baseline model described in Section

2.

Thus, with a set of parametric and distributional assumptions on the nature of the correla-

tion between travel cost and the unobserved, idiosyncratic preference term, it is possible to

account for the endogeneity problem and recover unbiased parameter estimates. Moreover,

while the linear assumption on the expectation of ξijt conditional on ϵijt may appear strong,

it is possible in practice to allow for more flexible specifications of the control function (11)

at minimal additional computational cost.

It is important to note that inference is non-trivial in the context of this relatively simple

two-stage estimator. A general feature of estimation in multiple stages is that noise from

earlier stages of estimation enters later stages, which means that the covariance matrix for

the final estimates must reflect this additional source of error. Karaca-Mandic and Train

(2003) and Petrin and Train (2010) derive the asymptotic covariance matrix of the second

stage estimates in a two-stage control function estimator of a multinomial logit model and

demonstrate the importance of accounting for this additional source of error in an empirical

setting. It is also possible to adjust the second stage standard errors by bootstrapping the

two-stage procedure (Petrin and Train, 2010).4

4.2 Control Function Approach and Measurement Error

It is relatively trivial to adapt the exposition in Section 4.1 to the case of measurement

error in travel costs. Ignoring potAssuming that true travel costs follow an analogous data

generating process as (5), i.e.,

cijt = w(zijt; γ) + µijt

4In the context of two-stage control function estimation of a recreation demand model, this would involve
re-implementing the two-stage procedure across a number of bootstrapped samples of choice occasions and
then taking the empirical covariance of second stage parameter estimates across bootstrap samples as the
estimate of the second stage covariance matrix.
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then it is possible to express observed travel costs (9) as

ĉijt = w(zijt; γ) + µijt + ζijt︸ ︷︷ ︸
≡ejmt

(14)

Assuming that it is possible to observe eijt, I can specify a control function for the unobserv-

able term representing measurement error in travel costs, ζijt, which enters both observed

travel costs and, as a result, indirect utility. In particular, I can decompose this unobservable

error term, ζijt into its mean conditional on eijt and an independent component:

ζijt = E[ζijt|eijt] + ζ̃ijt (15)

The conditional expectation in (15) is itself a function of eijt and can be approximated using

a control function:

ζijt = CF (eijt; ν) + ζ̃ijt (16)

where ν parameterizes the function CF (·). Once again, the simplest assumption is that

CF (eijt; ν) = νeijt (17)

Substituting (9), (16), and (17) into (8) gives:

uijt = X ′
ijtβi − ĉijtαi + ξj︸ ︷︷ ︸

vijt(Xijt;θ)

+νeijt + ζ̃ijt + ε̃ijt (18)

Making an analogous set of parametric and distributional assumptions on the nature of

the correlation between observed and true travel costs and assuming the analyst observes an

accurately-measured instrument for travel cost, zijt, (18) shows that is possible to account

for the measurement error problem and recover unbiased parameter estimates. Similar to

the solution that I present in Section 4.1, implementing this solution requires estimation in

two steps: in the first stage, observed travel costs are regressed on a valid cost instrument

which generates estimates of the residual term, êijt. In the second stage, these estimates are

included in a standard discrete choice model of recreation demand, such as the multinomial

logit or random parameters logit.

4.3 Performance of the Control Function Approach

I now turn to evaluating the performance of this alternative estimator. I implement the

two-stage control function estimator outlined above on the simulated choice data from
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Figure 4. Performance of Two-stage Control Function Estimator

Notes: This figure plots the distribution of estimated willingness-to-pay (WTP) using the baseline
multinomial logit estimator and two-stage control function estimator across 1000 simulated datasets for
each of the 6 simulations described in Section 3. Simulations 1 through 3 assume different non-random
sorting data generating processes: one where the idiosyncratic preference and travel cost are independent
(left); one corresponding to a model of household sorting towards desirable recreation sites, where the
idiosyncratic preference and travel cost are negatively correlated (center); and one corresponding to
a model of household sorting away from desirable recreation sites, where the idiosyncratic preference
and travel costs are positively correlated (right). Simulations 4 through 6 assume different measurement
error data generating processes: one where there is additive, mean-zero measurement error in travel costs
(left); one where measurement error is increasing in travel distance (center); and one where there is both
additive, mean-zero measurement error in travel costs as well as non-random sorting towards desirable
recreation sites, where the idiosyncratic preference and true, unobserved travel costs are negatively
correlated (right). The true value of the the willingness-to-pay statistic is shown as a vertical black line.

Simulations 1 through 6 from Section 3. Figure 4 compares the distribution of estimated

willingness-to-pay statistics obtained from the standard logit estimator and the two-stage

control function estimator for all six simulations. Apart from Simulation 1, which has no

correlation between unobserved preferences and travel costs and no measurement error, the

estimates from the two-stage control function estimator outperform the baseline logit es-
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Table 1. Willingness-to-pay Estimates for Simulated Choice Data

Baseline Estimator Control Function

Mean Bias MSE t-stat Mean Bias MSE t-stat

Baseline Simulation
Simulation 1 −0.500 −0.000 0.001 −0.005 −0.501 −0.001 0.001 −0.034

Non-random Sorting Simulations
Simulation 2 −0.410 0.090 0.009 2.770 −0.499 0.001 0.002 0.013
Simulation 3 −0.643 −0.143 0.022 −3.205 −0.500 −0.000 0.002 −0.002

Measurement Error Simulations
Simulation 4 −0.901 −0.401 0.165 −6.357 −0.495 0.005 0.002 0.127
Simulation 5 −0.817 −0.317 0.104 −5.231 −0.440 0.060 0.005 1.724
Simulation 6 −0.589 −0.089 0.011 −1.618 −0.501 −0.001 0.002 −0.026

Notes: This table reports summary statistics for willingness-to-pay estimates using the baseline
multinomial logit estimator and two-stage control function estimator across 1000 simulated datasets
for each of the 6 simulatinos described in Section 3. Simulations 1 through 3 assume different non-
random sorting data generating processes: one where the idiosyncratic preference and travel cost are
independent (left); one corresponding to a model of household sorting towards desirable recreation
sites, where the idiosyncratic preference and travel cost are negatively correlated (center); and
one corresponding to a model of household sorting away from desirable recreation sites, where the
idiosyncratic preference and travel costs are positively correlated (right). Simulations 4 through 6
assume different measurement error data generating processes: one where there is additive, mean-
zero measurement error in travel costs (left); one where measurement error is increasing in travel
distance (center); and one where there is both additive, mean-zero measurement error in travel costs
as well as non-random sorting towards desirable recreation sites, where the idiosyncratic preference
and true, unobserved travel costs are negatively correlated (right).

timates, as expected. In the case of the two sets of simulations with non-zero correlation

between unobserved site preferences and travel costs, the control function estimator reduces

bias in willingness-to-pay estimates by one to two orders of magnitude. Furthermore, as

shown in Table 1, it is not possible to reject the null hypothesis of equivalence to the true

willingness-to-pay value at any conventional level of statistical significance, with estimated

t-statistics of 0.013 and −0.002 for the control function estimates in Simulations 2 and 3,

respectively.

In the case of the simulations involving measurement error, the specified data generating

processes result in quite considerable bias from the standard logit estimator.5 In Simulations

4 and 5, which assume additive, independent measurement error and non-linear measurement

error, respectively, the control function estimator greatly reduces the magnitude of this

bias, again by several orders of magnitude. Interestingly, the performance of the control

function estimator is slightly attenuated in absolute terms with non-classical measurement

5This is an artifact of the specific magnitudes assumed for the data-generating processes; however, the
patterns in relative performance across the two estimators holds independent of these choices.
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error in Simulation 5, though the estimator still substantially outperforms the standard logit

estimator. However, I am still unable to reject the null hypothesis of equivalence of the

willingness-to-pay estimates from the control function estimator to the true value at a 95%

confidence level based on the t-statistic reported in Table 1 of 1.72.

Unsurprisingly, the performance of the two-stage control function estimator remains

strong with both non-random sorting and measurement error in travel costs. As shown

in Figure 4, the control function estimator has better coverage of the true willingness-to-

pay value than the standard logit estimator across the 1000 simulated choice datasets in

Simulation 6. Since the negative correlation between site preferences and true travel costs

and the classical measurement error in travel costs bias the travel cost parameter estimate

in opposite directions under the standard logit estimator, the relative performance gain of

the control function estimator is less than in Simulations 2 through 5; however, as shown in

Table 1, the absolute performance of this approach to bias correction is strong, resulting in

minimal bias and failure to reject equivalence to the true willingness-to-pay statistic at any

conventional level of statistical significance.

Taken together, the results shown in Figure 4 and Table 1 provide strong support in

favor of the two-stage control function approach to address a range of potential biases in

conventional recreation demand models. Regardless of the source or direction of the bias

in practice, this alternative estimator delivers relative performance improvements over con-

ventional estimators of discrete choice models of recreation demand that ignore potential

practical issues with travel costs. These simulation results should encourage analysts and

practitioners to implement this relatively simple two-stage correction to ensure valid infer-

ences from recreation demand models in empirical settings.

5 Empirical Application: Deepwater Horizon Oil Spill

In this section, I apply the insights of the numerical simulations in Sections 3 and 4 to a real-

world empirical setting. In particular, I examine the performance of the two-stage control

function approach in the context of a recreation demand model that is used to monetize lost

shoreline recreation associated with the 2010 Deepwater Horizon (DWH) oil spill in the Gulf

of Mexico. The DWH spill, which occurred following the explosion and sinking of an offshore

drilling rig 50 miles off the Louisiana coastline in April 2010, lasted 87 days and resulted in

the release of 134 million gallons of oil into the Gulf of Mexico, making it the largest oil spill

in US history.

English et al. (2018) estimates that the monetary losses from foregone shoreline recreation

following the DWH spill totaled $661 million. This estimate played a substantial role in
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compensatory litigation in the aftermath of the event: in response to the DWH spill, the

National Oceanic and Atmospheric Administration (NOAA) initiated a process of assessing

the recreation-related welfare losses for the purposes of pursuing compensation on the public’s

behalf under the authority of the Oil Pollution Act of 1990. This 5-year, multi-million dollar

effort employed a comprehensive strategy involving primary data collection and recreation

demand modeling. The recreation demand modeling component of this broader NOAA-led

effort, which is outlined in detail in English et al. (2018), is the primary focus of the empirical

application in this section.

5.1 Empirical Setting and Data

The NOAA-led assessment of recreational damages from the DWH spill employed two pri-

mary data collection methods, including (1) infield surveys of on-site recreational activities

and (2) telephone surveys of adult heads-of-household in the continental US. The infield sur-

veys included 129,000 in-person interviews, 35,000 onsite counts, and nearly 500,000 aerial

photographs and were collected over the three years beginning immediately after the DWH

spill in May 2010. These infield surveys form the basis of estimates of lost user days due

to the spill by year, month, and area, which are described in detail by Tourangeau et al.

(2017). While the primary data collected across these different infield survey instruments

do not directly enter the recreation demand modeling of English et al. (2018), the estimated

reduction in recreational user days over time and across sites reported in Tourangeau et al.

(2017) help calibrate monetary losses resulting from the DWH spill as I describe below.

The second source of primary data for this broader damage assessment effort—local

and nationwide telephone surveys of adult heads-of-household—form the basis of the choice

dataset used to estimate a discrete choice model of demand for recreation at Gulf Coast sites.

These phone surveys, which were based on samples of adults in the continental US, included

244,000 mail survey screeners and 43,000 telephone interviews.6 The telephone surveys were

conducted from 2012 to 2013 and collected information on any recent shoreline trips to

coastal areas in Texas, Louisiana, Mississippi, Alabama, Florida, and Georgia (henceforth,

“study area”). The surveys solicited detailed household demographic data as well as the

precise location of any recent shoreline recreation visits to the study area. In the recreation

demand modeling described below, the phone survey data are weighted to better reflect the

target population, namely Gulf Coast recreational users that reside in the contiguous US.7

6Mail survey screeners were used to collect phone numbers and identify households that had recreated on
the Gulf Coast in the past to allow for oversampling of Gulf Coast recreationists (English et al., 2018).

7In particular, English et al. (2018) construct a set of weights that (1) account for sampling probabilities
in populated areas; (2) correct for non-response by selected geographies; (3) correct for the intentional
oversampling of Gulf Coast recreationists based on the mail screener; (4) post-stratify to match the number
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Figure 5. Recreation Sites and The Distribution of Distance in English et al. (2018) Sample

(a) Location of Sites in Sample (b) Distance to Sites

Notes: Panel (a) maps the 83 aggregate shoreline sites included English et al. (2018)’s choice set.
Panel (b) plots the distribution of one-way driving distances between the full set of shoreline sites and
survey respondents’ residences separately for the local and nationwide surveys. The shoreline sites are
differentiated into four groups: Texas Sites, Northern Gulf Sites, Peninsula Sites, and South Atlantic
Sites. For the purposes of assessing monetary damages lost recreational user days, English et al. (2018)
identify the Northern Gulf and Peninsula Sites as the affected sites in respondents’ choice set.

English et al. (2018) aggregate surveyed households’ visit locations into 83 distinct sites

that span roughly 2,300 miles of coastline from Texas to Georgia. Figure 5 shows the location

of these sites as well as the regional groupings that English et al. (2018) use to analyze the

impact of the DWH spill: Texas, Northern Gulf, Peninsula, and South Atlantic. Of the

83 total sites, the authors define the 54 sites in the Northern Gulf and Peninsula regions

as those adversely affected by the spill. These 83 aggregate sites represent the full choice

set available to respondents when English et al. (2018) construct the data that they use to

estimate a discrete choice model of demand for Gulf Coast recreation.

In order to calculate the travel cost associated with visiting the 83 aggregate sites in

respondents’ choice set, English et al. (2018) follow best practices in the recreation demand

literature while also making several noteworthy innovations on existing methods. In partic-

ular, recognizing that a non-trivial number of respondents likely chose to fly to their Gulf

Coast destination given the geographic scale of the target population, English et al. (2018)

solicit mode choice information in their phone survey to generate flying and driving probabil-

ities as a function of one-way driving distance to a given site as well as a subset of household

demographics. These flight probabilities are used in combination with driving distances and

detailed data on marginal driving costs as well as expected flying costs to construct expected

of households in aggregate geographies included in the target, continental US population; (5) adjust for
the number of residents in respondents’ household; and (6) re-weight for aggregate observable demographic
characteristics. For additional information see English et al. (2018).
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travel costs for every respondent-shoreline site combination. Given that the calculation of

travel costs has important implications for how we think about possible bias in standard dis-

crete choice models of recreation demand, I will discuss additional aspects of English et al.

(2018)’s calculations in detail below; however, I refer the interested reader to English et al.

(2018) for a complete description of these calculations.

Given the public funding for this assessment, all data—from processed respondent data to

the final data used in recreation demand estimation—are publicly available. In particular,

I obtain the data that English et al. (2018) use directly from NOAA’s Natural Resource

damage Assessment (NRDA) public repository.8

5.2 Model

English et al. (2018) use a nested logit model to characterize demand for shoreline recreation

on the Gulf Coast. The authors use the survey data collected from contiguous US households

from 2012 to 2013 to estimate the parameters of the nested logit model under baseline, non-

spill conditions and calibrate the estimated model to match observed declines in recreational

user days immediately following the spill in order to compare recreational values during spill

and non-spill conditions.

The benefit of the nested logit in this context is that it allows the authors to capture

the extensive margin of Gulf Coast recreation demand: the upper nest models households’

decision of whether or not to visit a Gulf Coast shoreline site and—conditional on choosing to

visit a site—the lower nest models households’ choice between sites. Building on the notation

of the standard model that I present in Section 2, let uij denote the conditional utility received

by individual i ∈ {1, . . . , N} when selecting Gulf Coast shoreline site j ∈ {0, . . . , J}, where
site j = 0 denotes the outside option of choosing to not visit a Gulf Coast site and j > 0

denotes the inside options of the 83 distinct shoreline sites.9 In the version of English et al.

(2018)’s model that I implement, individual i’s conditional utility from visiting shoreline site

j is uij = vij + εij with:

vij =

{
0 for j = 0

ξj − cijα for j ∈ {1, . . . , J}
(19)

where I normalize the observable component of the flow utility from the no visit option,

j = 0, to zero; ξj is a site-specific constant representing mean valuations of that site; and

8The Deepwater Horizon NRDA data are available for download here: https://www.diver.orr.noaa.

gov/deepwater-horizon-nrda-data (last accessed 2/29/2024).
9Note that in the behavioral choice data, English et al. (2018) do not observe households making visitation

decisions on repeat occasions, so I suppress the t subscript that I use in the exposition in Section 2.
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cij is household-site-specific travel cost.10 Note that in contrast to the more general model

presented in Section 2, (19) suppresses individual-specific heterogeneity in preferences.

In their model, English et al. (2018) assume that εij follows a generalized extreme value

distribution that implies a two-level nesting structure. With the specification of conditional

utility (19), this implies choice probabilities of the following form:

pij =


1

1+
(∑J

k=1 exp(vik/ρ)
)ρ for j = 0

exp(vij/ρ)∑J
k=1 exp(vik/ρ)

×
(∑J

k=1 exp(vik/ρ)
)ρ

1+
(∑J

k=1 exp(vik/ρ)
)ρ for j ∈ {1, . . . , J}

(20)

where ρ is a nesting parameter or “dissimilarity coefficient” that proxies for the degree of

preference correlation within groups.

I take the nested logit model implied by (19) and (20) to the data, estimating the target

parameters,
[
α ρ ξ1 . . . ξJ

]
, via maximum likelihood estimation. This represents the

analog to the model estimates of English et al. (2018), which I interpret as representing the

baseline, standard approach to discrete choice recreation demand modeling in this context.

In light of the potential challenges with this standard approach that I discuss in Section

3, I also implement the two-stage control function estimator in this setting. As outlined

in Section 4, this involves regressing travel cost on a set of valid instruments, Zij, and

then plugging the residual from this first stage, µ̂ij, into the second stage nested logit as

an observable with an additional target parameter, λ. All that remains to implement this

alternative estimator in the context of English et al. (2018)’s model of Gulf Coast shoreline

recreation is to identify a set of valid travel cost instruments.

5.3 Valid Travel Cost Instruments

A valid instrument for travel costs must satisfy the relatively standard conditions of relevance

and exogeneity: in other words, the instrument must plausibly affect idiosyncratic travel

costs, but be independent of households’ demand for outdoor recreation. There are likely

many possible empirical instruments that analysts can use and—much like other research

designs that rely on instrumental variables—the ideal choice of instruments is likely context-

specific. However, given the nationwide scale of the current empirical setting, I seek to

identify several possible travel costs instruments that may have relatively broad application

10English et al. (2018)’s model allows household demographics to enter the flow utility of non-visitation.
Given that my primary focus is on the estimation of the travel cost parameter, α, across different estimators,
I omit this richer specification. As a result, the estimates of lost user day value that I estimate are not
directly comparable to those in English et al. (2018); however, the relative differences that I estimate across
estimators are nonetheless of independent interest and should apply to the findings of English et al. (2018)
and more broadly.
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in the recreation demand literature.

Considering the data-generating process for travel costs and the methods used to con-

struct these measures in practice, there are two broad categories of potential travel cost

instruments: those that influence households’ choice of residence location, but not recre-

ation site choices; and those that influence the marginal cost of site visitation, but not

recreation site choices.

An example of the first category of instruments is a measure of a household’s expected

time spent commuting to work. This is likely correlated with households’ choice of res-

idence location, which in turn determines the distribution of travel costs associated with

visitation of a set of recreation sites: as shown in Appendix Figure A1, there is substantial

cross-sectional variation in average commuting times across the US, which suggests that

households are likely able to factor this into their choice of residence. Conditional on resi-

dence choice, it is plausible that a household’s commuting time for work has little impact on

their choice of recreation site. Moreover, the average values in Appendix Figure A1 likely

mask substantial local heterogeneity in commuting times, which suggests that analysts may

be able to use granular measures of employment commuting times for smaller-scale recreation

demand contexts than the nationwide model on which I focus.

Given the substantial heterogeneity in average commuting time across Zip codes in the

US as shown in Appendix Figure A1, I use this as one instrument for travel cost in the

present context. In particular, I use average commuting time in respondents’ Zip Code Tab-

ulation Area of residence, which I take from the US Census Bureau’s 2012 5-year American

Community Survey, as an instrument for travel cost in the present model of contiguous US

demand for Gulf Coast shoreline recreation.

There are two plausible examples of the second category of instruments, i.e., those that

influence the marginal cost of site visitation directly. In the case of the US, there is substan-

tial heterogeneity across states and over time in the level of gasoline tax rates as shown in

Appendix Figure A2. I use variation in the rate of the gasoline tax in the state of destination

at the time a respondent is surveyed interacted with one-way driving distance as an instru-

ment for travel cost in the present context. Though there is non-trivial variation in gasoline

tax rates across the six states in the study area, I interact these rates with one-way driving

distance as households are likely more sensitive to variation in destination taxes for further

away sites that involve more driving and therefore gasoline consumption. While these tax

rates are clearly correlated with households’ expected travel costs, this is likely the only

channel through which these tax rates influence recreation demand.

An additional example of an instrument that influences the marginal cost of site visitation

directly is the price of crude oil. In the present context, I interact the West Texas Inter-
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mediate benchmark price with one-way driving distance to each site and use the resulting

variable as an additional travel cost instrument. This is clearly correlated with travel cost,

but is likely exogenous to unobserved characteristics. While this is not directly testable, it is

unlikely that a crude oil price benchmark interacted with driving distance is correlated with

factors influencing recreation demand other than directly through travel cost as those factors

which determine world oil prices are plausibly different from those which would enter both

individuals’ recreation decisions. However, it is possible that seasonality in crude oil prices

or macroeconomic trends that influence the global crude oil market also affect household

recreation demand.

In light of this, I also follow the approach of Kilian (2009) to isolate structural supply and

demand shocks in the global crude oil market from seasonal or aggregate demand fluctuations.

I describe the method in detail in Appendix B. I interact the resulting crude oil supply

and demand shock time series, which I plot in Appendix Figure A3, with one-way driving

distance and use these as two additional instruments for travel cost. These instruments

follow a “shift-share” logic: shocks to global crude oil demand or supply work to change

the relative prices of sites at different distances from a household. Since these shocks to the

global crude oil market are plausibly exogenous to household recreation demand, these shifts

in relative prices should serve as valid instruments for travel cost.

5.4 Results

I report estimates from four separate first stage regressions of individual- and site-specific

travel cost on a set of instruments and alternative specific constants in Table 2. I make a

simple functional form assumption for the first stage where each excluded instrument enters

travel cost linearly. The four specifications in Table 2 vary the crude oil price instrument(s)

and whether sample weights are used. Overall, the estimated coefficients on the excluded

instruments in the first stage regressions all have the expected sign and appear to explain

a substantial share of variation in travel cost across individuals and sites. The first stage

F -statistics of joint nullity all well exceed conventional rule-of-thumb cutoffs for weak in-

struments employed in the two-stage least squares literature.

Taken together, Table 2 suggests that the selected instruments all satisfy the relevance

condition and the resulting residuals likely isolate the component of travel cost that is cor-

related with unobserved preferences for recreation sites or measurement error. Given the

possible concern around the use of the WTI crude oil benchmark discussed in Section 5.3

and to ensure consistency with the observation weights used in the second stage, I use resid-

uals from the regression reported in Column (4) of Table 2 in estimating the second stage.

Table 3 reports parameter estimates from maximum likelihood estimation of the second
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Table 2. First Stage Estimates

Travel Cost

(1) (2) (3) (4)

Origin Commute Time 0.328 0.306 1.25 1.25
(0.091) (0.090) (0.096) (0.098)

Destination Gas Tax × Distance 0.020 0.028 0.015 0.020
(0.005) (0.0003) (0.003) (0.0002)

WTI × Distance 0.001 0.0010
(0.0009) (0.0006)

Oil Supply Shock × Distance −0.042 −0.003
(0.003) (0.011)

Oil Demand Shock × Distance 0.0008 0.0006
(0.0002) (0.0005)

Alternative Specific Constants Yes Yes Yes Yes
Sample Weights No No Yes Yes
Observations 3,462,428 3,462,428 3,462,428 3,462,428
R2 0.469 0.468 0.346 0.345
Within R2 0.451 0.451 0.343 0.342
F -statistic 2,568.7 14,752.6 3,120.6 3,058.1

Notes: This table reports estimates from a series of first stage regressions of individual- and site-
specific travel cost on a set of instruments and alternative specific constants. See Section 5.3 for a
discussion of the different excluded instruments. Columns (1) and (2) do not weight observations
whereas Columns (3) and (4) use the sample weights constructed by English et al. (2018) to weight
observations.

stage discrete choice model of demand for visits to Gulf Coast shoreline recreation sites.

For concision, I omit reporting the 83 site-specific constants for each estimator. Column

(1) of Table 3 reports estimates from a standard nested logit model that is analogous to

the main estimates in English et al. (2018)—though, as noted in Section 5.2, I do not

model observable demographic heterogeneity in preferences for the outside option. Despite

the different specification, the travel cost and nesting parameters are quite similar to those

reported by English et al. (2018): my estimate of the travel cost parameter is negative in

sign, large, and highly statistically significant and my estimate of the nesting parameter

implies a similar degree of within-nest correlation in preferences as that found by English

et al. (2018).

Column 2 of Table 3 reports estimates from the analogous two-stage control function

estimator described in Section 5.2. Reported standard errors for this model adjust for noise

in the first stage residuals using the asymptotic covariance formula from Karaca-Mandic and

Train (2003). While the estimated nesting parameter with the control function adjustment

is similar in magnitude to the baseline estimate, the estimated travel cost parameter sub-

stantially increases in magnitude: households’ mean sensitivity to travel cost increases in
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magnitude from −1.08 in the uncorrected, baseline estimates to −1.51 in the control func-

tion estimates, a 40% increase. Thus, it appears as though failing to account for potential

non-random selection travel costs and/or measurement error in travel costs biases estimates

of the travel cost parameter towards zero, suggesting that standard models in this context

underestimate households’ price sensitivity.

Perhaps unsurprisingly given the direction of the apparent bias in the baseline estimates,

the first stage travel cost residuals enter the second stage positively: the estimated parameter

on the travel cost residuals is positive, large-in-magnitude, and highly statistically-significant.

A positive parameter on the first stage residuals in households’ indirect utility indicates that

travel costs are, on average, higher than can be explained by observed factors entering the

baseline estimates in Column (1).

It is important to note once again that parameter estimates may not be directly compa-

rable across Columns (1) and (2) of Table 3 due to the standard issue with discrete choice

models discussed in Section 2, namely the non-identification of the scale of indirect utility.11

However, the model parameters are not necessarily of independent interest in this context,

but rather serve as key inputs into the calculation of the value of a lost user day due to the

DWH spill. These welfare statistics are directly comparable across the two sets of estimates

given that they do not depend on the scale of indirect utility, much in the same way that

the willingness-to-pay statistic is comparable across the different simulations discussed in

Sections 3 and 4. Given the lack of data on site visitation decisions during the period of the

DWH spill, the process of calculating the lost user day value in English et al. (2018) involves

a somewhat involved calibration procedure, which I discuss in Appendix C.

Table 3 reports estimated lost user day values in dollars per user day based on the base-

line and control function parameter estimates and the procedure outlined in the Appendix.

Using the baseline parameter estimates, I calculate a lost user day value of $7.04 from the

DWH oil spill. Based on the parameter estimates that account for possible endogeneity and

measurement error in travel costs, I estimate a lost user day value of $5.49, a 22% change

in the per unit welfare loss resulting from the oil spill. Applying this proportional change

to the aggregate welfare loss estimate of English et al. (2018), this translate into an overes-

timation of the total recreation-based losses from the DWH oil spill of around $145 million,

which suggests that accounting for the threats to travel cost estimation discussed herein is

of first-order policy significance.

Unfortunately, it is difficult to determine the precise source of the bias evident in the

standard model estimates solely based on the results in Table 3. Indeed, to determine whether

any non-random sorting towards or away from desirable recreation sites exists in the data, I

11See Section 2 and Train (2009) for additional discussion.
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Table 3. Second Stage Estimates

Baseline Control Function

Parameter (1) (2)

Travel Cost α -1.080 (0.008) -1.512 (0.032)
Nesting Parameter ρ 0.208 (0.002) 0.198 (0.003)
First Stage Residual λ 1.103 (0.046)

Alternative Specific Constants Yes Yes
Lost User Day Value ($/day) 7.035 5.487
N 41,716
Sites 83

Notes: This table reports estimates from the second stage discrete choice model of demand
for visits to Gulf Coast shoreline recreation sites. Parameters are estimated via maximum
likelihood estimation. Column (1) employs a standard nested logit model of demand of a
similar specification to that in English et al. (2018). Column (2) implements the analogous
two-stage control function estimator described in Sections 4 and 5.2. Asymptotic standard
errors are reported in parenthesis, with the standard errors in Column (2) adjusting for noise
from the first stage regression using the asymptotic formula for the covariance matrix from
Karaca-Mandic and Train (2003). The process for calculating lost user day values is described
in detail in Appendix C.

would need to specify and estimate a complete model of the residential sorting process—an

important exercise, but ultimately one which is outside the scope of this paper. However,

the overall direction of the bias is nonetheless informative. In the results for Simulations 3

through 6 reported in Figure 4, we see that the baseline, uncorrected parameter estimates

lead to an overestimation of the magnitude of a similar ratio of parameters as the lost user

day statistic that I report in Table 3. The form of non-random sorting into travel costs

modeled in Simulation 3, where households move away from sites they prefer leading to a

positive correlation between idiosyncratic site preferences and travel cost is possible, though

unlikely in practice: why, for instance, would households with a lower preference for a specific

site sort closer to that site, all else equal?

Thus, it is likely that the bias that I observed in Table 3 is driven by measurement error

in travel costs.12 As I discuss in Section 3.2, there is good reason to believe that there

is likely some form of measurement error in travel costs in most if not all applications of

recreation demand modeling, even when extreme care is taken in the construction of this

variable as is done by English et al. (2018). The necessity even in the most complex of travel

cost calculations of simplifying assumptions and the use of aggregate data means that this

field is likely observed with error. Indeed, even when the analyst gets travel costs correct

12As Simulation 6 demonstrates, it is possible that there is also sorting towards desirable recreation sites
in the data that at least partially offsets the direction of the bias from measurement error. Without a
more complete model of the residential sorting process, it is impossible to disentangle this from possible
measurement error.
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on average as was the case in Simulation 4, this can lead to non-trivial attenuation bias

in standard model estimates. Thus, while English et al. (2018)’s example of estimating

recreation-based welfare losses from the DWH oil spill represents the state-of-the-literature

in recreation demand estimation, it also highlights the importance of addressing what are

likely important issues with travel cost models in practice.

6 Conclusion

Recreation demand models inform decision-making across a wide range of applications, from

regulatory impact analysis and resource management to public health and environmental

litigation. Careful estimation of model parameters in these settings is critical to ensure

unbiased inferences when making policy, regulatory, and legal decisions.

I show that two common empirical challenges previously ignored in the recreation demand

literature, namely the potential for non-random residential sorting based on preferences for

outdoor recreation and measurement error in travel costs, can substantially bias estimates

in entire classes of commonly used discrete choice models. I demonstrate a simple, feasible

approach to addressing these two issues simultaneously in empirical applications. In par-

ticular, I present an instrumental variables estimator that is analogous to two-stage least

squares in the nonlinear context of standard discrete choice models. In a series of numerical

simulations, I find that this relatively straightforward correction substantially outperforms

standard approaches to recreation demand estimation. Moreover, I demonstrate the rela-

tive ease with which analysts can implement this fix by replicating a recent, high-profile

application of recreation demand modeling that estimates the welfare losses from the 2010

Deepwater Horizon oil spill in the Gulf of Mexico, finding that accounting for these twin

problems alters welfare estimates by as much as 22% in this context.

Based on the findings of this paper, I strongly encourage analysts estimating empirical

models of recreation demand to implement instrumental variables estimators of their under-

lying discrete choice models using the two-stage control function approach. At best, doing

so can demonstrate the robustness of estimates from the standard approaches to recreation

demand estimation if not document meaningful bias from these estimators. In cases where

there is reason to believe non-random sorting on preferences for recreation is important,

analysts may want to consider explicitly modeling residence choices and recreation demand;

however, the two-stage control function approach discussed herein provides a simple means

of calculating unbiased estimates of willingness-to-pay and partial equilibrium welfare.

It is likely that the instrumental variables that I use in the empirical exercise in Section

5 can be applied in other applications of the recreation demand model. More broadly,
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instruments that influence households’ choice of residence location or the marginal cost of

site visitation, but not recreation site choices directly, should serve as valid instruments

in practice. Those that I use to estimated a nationwide model of Gulf Coast shoreline

recreation—households’ average commuting time to work; variation in destination state gas

taxes; and supply and demand shocks in the global crude oil markets—likely provide an

accessible starting point for other applications of recreation demand modeling where more

context-specific instruments may be readily available.

Estimating models of recreation demand requires solving important identification chal-

lenges. Indeed, this is well acknowledged in countless other applications of demand estima-

tion since the seminal work of Wright (1928), with recreation demand estimation a puzzling

outlier. While these findings might be concerning to policymakers and practitioners who

rely on the conclusions from recreation demand models, the relatively simple fix for which I

advocate in this paper should restore faith in this important methodology moving forward.
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A Supplemental Figures and Tables

Figure A1. Average Commuting Time by Zip Code Tabulation Area, 2012

Notes: This figure plots the distribution of average one-way commuting time by Zip Code Tabulation
Area for 2012. Data are taken from the US Census Bureau’s 2012 5-year American Community Survey.
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Figure A2. Variation in Real State Gasoline Taxes over Time

Notes: This figure plots the distribution of gasoline tax rates across US states over time. In particular,
the shaded areas show the following annual percentiles of gasoline tax rates: bottom, 20th, 40th, 60th,
80th, and top. The black line shows the median state gasoline tax rate. All values are in 2018 cents per
gallon.
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Figure A3. Time Series Variation in Structural Shocks from Model of Global Crude Oil
Market

Notes: This figure shows estimated structural errors from a vector autoregressive model of the global
crude oil market based on Kilian (2009). The model uses global time series data on global crude oil
production, real economic output, and the real price of oil to calculate structural shocks to aggregate
demand (top), oil demand (middle), and oil supply (bottom).
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B Estimating Structural Oil Market Shocks

It is possible that seasonality in crude oil prices or macroeconomic trends that influence the

global crude oil market also affect household recreation. As a result, I follow the approach of

Kilian (2009) to isolate structural supply and demand shocks in the global crude oil market

from factors which may otherwise be correlated with recreation demand. This approach uses

a novel measure of global real economic activity as well as global crude oil production to

decompose the real price of crude oil into three components: (1) crude oil supply shocks; (2)

demand shocks for industrial commodities, a proxy for aggregate demand; and (3) demand

shocks for crude oil.

To isolate structural shocks in the global crude oil market following Kilian (2009), I

acquire data on monthly global crude oil production and US refiner acquisition costs, which

proxies crude oil prices, from the US Energy Information Administration (EIA). I obtain

a monthly index of global real economic activity from Kilian (2009), which is available

through the Federal Reserve Bank of Dallas.1 This monthly index, which proxies for global

business cycle trends, is derived from a panel of dollar-denominated global bulk dry cargo

shipping rates. This index can be viewed as a proxy for the volume of shipping in global

industrial commodity markets. Given the importance of freight in international trade, this

index provides a strong indicator of global demand pressures and is more closely linked with

global real output than other measures such as GDP (Kilian, 2009). I combine data on these

monthly time series for the period from January 1985 to October 2023.

Following Kilian (2009), I isolate structural shocks in the global crude oil market from

these data using a vector autoregressive (VAR) model. Let x′
t =

[
∆prodt reat rpot

]
where

∆prodt is the percent change in global crude oil production, reat is the index of real economic

activity from Kilian (2009), and rpot is the real price of oil. The structural VAR is as follows:

A0xt = α +
24∑
i=1

Aizt−i + εt (B1)

where εt is a vector of serially and mutually uncorrelated structural shocks. Following Kilian

(2009), I assume that A−1
0 has a recursive structure such that the reduced form errors in

1The global real economic activity index is available for download here: https://www.dallasfed.org/
research/igrea (last accessed 3/4/2024).
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(B1), et, can be decomposed as follows:

et =

e
∆prod
t

ereat

erpot

 =

a11 0 0

a21 a22 0

a31 a32 a33


 εoil supply shock

εagg demand shock

εoil demand shock

 (B2)

where εoil supply shock, εagg demand shock, and εoil demand shock are the structural errors of interest.

Thus, with estimates of the autoregressive parameters, A0, and reduced form errors, et, from

the empirical implementation of (B1), it is possible to construct estimates of the structural

error terms.

This model implicitly assumes several exclusion restrictions. In particular, the model

assumes that oil supply does not respond to innovations in oil demand within the same

month, i.e., a vertical short run supply curve. Moreover, the model structure assumes that

changes in the real price of oil driven by oil-specific shocks will not lower global real economic

activity immediately. Any changes in the real price of oil that cannot be explained by unpre-

dictable innovations to global oil production or real economic activity will, by construction,

reflect changes in the demand for oil rather than changes to the demand for all industrial

commodities.

Figure A3 plots quarterly averages of the estimated monthly innovations to aggregate

demand, oil demand, and oil supply. As is clear from Figure A3, the real price of oil is

a function of a number of concurrent shocks, each of which is driven by different global

phenomena. Several events clearly emerge in Figure A3, including the Great Recession and

the Covid-19 pandemic.
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C Calculating Lost User Day Value

Given that the shoreline recreation demand model in Section 5.2 is estimated using data

from the post-spill period, it recovers preferences for shoreline recreation in the Gulf of

Mexico under the baseline or no-spill conditions. In order to calculate estimates of the lost

user day value due to the Deepwater Horizon (DWH) oil spill, it is therefore necessary to

estimates how demand shifted in response to the spill. Given the lack of site choice data

during the spill period—which lasted approximately 5-6 months after the DWH explosion in

April 2010—and the relatively extreme nature of the spill conditions, English et al. (2018)

uses external information from the onsite counts to infer changes to overall preferences for

individual sites induced by the spill.

This external information is based on the analysis of Tourangeau et al. (2017) and is

used to infer changes in affected sites’ alternative specific constants. In particular, English

et al. (2018) use estimates on the proportional reduction in trips to two broad categories

of sites—the Northern Gulf and the Florida Peninsula (see Figure 5 in the main text)—to

calibrate affected sites alternative specific constants to reflect spill conditions. Letting the

estimates of the proportional reduction in visitation be denoted by rg for g ∈ {Northern
Gulf, Florida Peninsula}, the calibration exercise entails selecting group-level adjustments,

δg, to the alternative specific constants such that

ξ1j =


ξ0j + δNG for j ∈ JNorthern Gulf

ξ0j + δFP for j ∈ JFlorida Peninsula

ξ0j otherwise

(C1)

where JNorthern Gulf and ∈ JFlorida Peninsula are the sets of sites that fall within the Northern

Gulf and Florida Peninsula, respectively; ξ0j are the alternative specific constants estimated

under baseline conditions; and ξ1j are the calibrated alternative specific constants under spill

conditions.2

2English et al. (2018) model two distinct spill condition periods, one immediately after the spill in which
both affected regions experience a fixed reduction in visits and a later spill condition period where only
the Northern Gulf experiences adverse impacts from the spill, with a lower reduction in observed visitation
for this region during this later period. For simplicity and for the sake of comparing estimates across the
standard and control function estimators, I focus on estimating lost user day values for the first period only
since the calculation is analogous during the second period.
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To calibrate δg, I first calculate spill condition choice probabilities as follows:

s1j =


(1− rNG)s

0
j for j ∈ JNorthern Gulf

(1− rFP )s
0
j for j ∈ JFlorida Peninsula

s0j otherwise

(C2)

I then iterate over the following contraction mapping until convergence, where for each

iteration t, the next iterate is given by:

δ(t+1)
g = δ(t)g + log(s1j)− log(ŝj(ξ

1
j )) (C3)

where—with some abuse of notation—ŝj(ξ
1
j ) is the model-implied market shares based on

the choice probability defined in Section 5.2, total households facing each choice occasion,

the parameters estimated under baseline conditions; and the alternative specific constants

under the spill conditions.

With estimates of the shoreline recreation demand model under baseline conditions and

the calibrated alternative specific constants under spill conditions, it is possible to calculate

welfare losses following English et al. (2018). In particular, the value per lost trip from the

spill conditions is given by:

∆CV =

∑N
i=1 Ti

1
α̂

[
log

(
1 +

(∑J
j=1 exp

( v̂1ik
ρ̂

))ρ̂
)
− log

(
1 +

(∑J
j=1 exp

( v̂0ik
ρ̂

))ρ̂
)]

∑N
t=1 Ti

(
(p̂0i,NG + p̂0i,FP )− (p̂1i,NG + p̂1i,FP )

) (C4)

where Ti is the number of choice occasions that observation i represents (i.e., an observation-

level weight); v̂1ik is the calibrated estimate of conditional utility under spill conditions; v̂0ik is

the estimate of conditional utility under baseline conditions; α̂ and ρ̂ are parameter estimates;

p̂0i,NG and p̂0i,FP are estimates of the probability of visiting a North Gulf or a Florida Peninsula

site under baseline conditions, respectively; and p̂1i,NG and p̂1i,FP are calibrated estimates of

the probability of visiting a North Gulf or a Florida Peninsula site under spill conditions,

respectively. The numerator is based on the standard log-sum formula for the welfare loss

due to changes in conditional utility and the denominator gives the change in trips to the

North Gulf and Florida Peninsula. To translate (C4) into a value per user day, I divide by

the mean number of recreational days per trip.
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